

火山現象の数値シミュレーション と火山防災

藤田 英輔 国立研究開発法人 防災科学技術研究所 上席研究員 (一財)砂防・地すべり技術センター 理事

1. はじめに

火山噴火とそれに伴う火山災害は、複雑な物理的・ 化学的な要素の組み合わせにより発生する現象であ り、これらを総合的に評価することによって、火山噴 火予知・推移予測、災害推定などについて精度の高い 情報発信が可能となる(図-1)。複雑な現象を総括的 に解明するために、数値シミュレーションは有効な 手段である。火山観測データや実験データから得られ る帰納的情報と理論から導出する演繹的情報を相互に フィードバックさせて、より高度で精度の高いモデル を構築する。

火山活動は地下におけるマグマ等の火山性流体の移 動やそれに伴う地震・地殻変動・電磁場・火山ガスな どを様々な手法により観測することで把握することが できる。これらの観測データを整合的に説明するよう な物理モデルを構築し、そのモデルに基づいて地下の 発生源で何が起こっているかを推測し、その後の火山 活動の予測の評価につなげることを目指している。一 方、ひとたび、マグマ等が地表に噴出した場合は、直 接的な火山災害が発生する危険性があり、その評価が 重要である。

2. 地下におけるマグマの流動シミュ レーション

えいすけ

ふじた

2.1 火道流シミュレーション

マグマは噴火口から噴出される際に固体・液体・気 体が混合した多相流の状態となっており、その組み合 わせによって噴火の様式が決まる。そのために、火道 流のメカニズムを解明することが重要である。マグマ が地下から上昇することに伴い、減圧発泡が促進され、 気体成分が析出する。この気体への相転移が急激な体 積膨張をもたらす。気体が周辺へ浸透して抜けてしま う場合には爆発性が高まらず穏やかな噴火となるが、 急激な発泡と体積膨張で周辺への脱ガスの時間が十分 にない時は爆発的な噴火となる。

噴火様式がどのようになるか、事象の分岐をもたら すパラメータの抽出に関するシミュレーション研究が 行われている(図-2)。これは3章で示すように、様々 な火山ハザードのうち、どれになりうるかを判断す るための情報となる。火道流モデルでは気液二相流を 定式化し、火道を取り巻く地殻を弾性体として取り扱 い、周辺等の応力連接やガス成分の浸透を組み合わせ、 観測しうる地殻変動量などの観測量を説明する。例え ば、ブルカノ式噴火では、火口直下浅部でのマグマ蓄 積・流動過程を浅部マグマ溜りと火道からなるマグマ 供給系の数値モデルで再現可能であることが分かって きた。また、プリニー式噴火、溶岩流出噴火についても、

図-3 個別要素法による岩脈貫入シミュレーションにおける応力場・過剰圧の設定

火道流モデルにおけるマグマ物性や火道形状の効果に ついて定量的な評価を踏まえ、噴火様式間の遷移過程 の再現が行われている。

2.2 マグマ貫入シミュレーション

地下でのマグマの移動に伴い、火山性地震や火山 性の地殻変動が発生する。特に破壊を伴う岩脈貫入に ついて、連続体力学で定式化しようとするとマグマと 岩石の間で複雑な境界条件に対処する必要があり、上 昇経路の選択などについてマグマ貫入過程を柔軟に追 跡するのが難しい。多様な条件でマグマ貫入過程のシ ミュレーションをするには、定式化に幾何学的な制 約の少ない粒子法が適している。粒子法の一つとし て、個別要素法 (DEM) による岩脈貫入シミュレー ションを実施している。DEM では地殻を粒子の集合 体として表現する。粒子は間隙ばねで接合され、間隙 ばねは normal 方向および shear 方向にそれぞれ弾性 ばねとダッシュポットを設定し、normal 方向には閾 値、shear 方向には Mohr-Coulomb 条件による破壊判 定を組み込む。ミクロスケールでのばね定数はマクロ スケールでの剛性率や粘性との対応がつくように圧縮 数値試験により求められた値を用い、10 km x 10 km x 10 km の対象領域にランダムに粒子を生成し、重力 パッキングを行い、この内部にマグマ領域を設定して、 初期過剰圧を与えて岩脈貫入を再現する。また、岩脈 貫入のパターン(形状)は周辺の3次元応力場(差応 力)を強く反映する。水平方向の境界に広域応力場を
 設定し、鉛直方向には静岩圧を設定する。今回、水平 方向は等方的としている(図-3)。粒子の移動に伴う 周辺の応力の変化に着目した。図-4に噴火未遂の場合、 図-5 に噴火に至る場合における岩脈シミュレーショ ンの計算結果を示す。岩脈と周辺地殻の境界域に応力 集中と開放が顕著であり、この付近での地震発生が起 こっていることが分かる。この他、岩脈から離れた場 所でもランダムに地震が発生する。100万粒子の場合、 1粒子のサイズは100m程度でありM2程度に相当す る。応力が増加している際にはこの粒子に応力集中が 起こり、その後減少したところが地震発生による応力 降下を表している。応力降下量は発生する地震の卓越

図-4 噴火未遂の場合における岩脈分布(左上)・Mises 応力変化量(右上)・参照粒子(左下)・参照粒子の Mises 応力量変化の時間変化(右下)

図-5 噴火に至る場合における岩脈分布 (左上)・Mises 応力変化量 (右上)・参照粒子 (左下)・参照粒子の Mises 応力量変化の時間変化 (右下)

周波数と関連しており、小さい場合が低周波、大きい 場合は高周波に対応する。岩脈貫入開始時、深部では 低周波が卓越するが、上昇に伴って高周波が卓越する 傾向があることが分かる。岩脈貫入による噴火/噴火 未遂は、主に初期過剰圧量によって決まる。初期過剰 圧が不十分で噴火未遂となる場合、深部のほぼ同じ地 点で応力集中と降下を繰り返し、継続して低周波が卓 越する地震が発生する事象も確認されている。

2.3 地殻変動シミュレーション

観測される地殻変動から、地下のマグマシステムの 位置や形状などが推定可能である。

火山地形の効果を考慮した地殻変動を境界要素法に よる数値計算で求める手法の開発が行われている。一 例として、伊豆大島のGNSS観測点に適用したものを 示す(図-6)。三原山(山頂の標高758m)の山頂直 下に球状圧力源を設置し数値計算によって求めた変位 量と、半無限均質弾性体を仮定した標高補正茂木モデ ルによる変位量を観測点毎に比較している。設置した 圧力源の深さが海抜0mより高い場合、三原山周辺の 観測点では、数値計算で求めた水平変位量と標高補正 茂木モデルで求めた水平変位量の差が大きくなる。一 方、圧力源が深くなると、数値計算結果と標高補正茂 木モデルの差はわずかとなる。地殻変動データを用い た圧力源の推定結果への地形効果の影響として、数値 計算で求めた三原山山頂直下の球状圧力源の膨張によ

図-6 数値計算で求めた伊豆大島三原山の山頂直下の球状圧力源の膨 張による水平変位(青)と標高補正茂木モデルから求めた水平 変位(赤)の比較

る GNSS 観測点の水平変位量を観測データと仮定して、 標高補正茂木モデルを用いたグリッドサーチにより圧 力源の推定を行った結果、圧力源の深さが海面下 400 mよりも深い場合、標高補正茂木モデルから推定され る圧力源の深さは数値計算で設定した圧力源の深さと ほぼ同じになる。圧力源の深さが浅くなると、標高補 正茂木モデルによる解析で得られる圧力源の深さは数 値計算で設定した圧力源の深さよりも浅くなる。設定 する圧力源の深さが標高 100m よりも浅い場合、推定 される圧力源の深さは設定した深さより 100m 以上浅 くなる。地表付近のごく浅部に圧力源が想定されるよ うな地殻変動データを用いた圧力源推定では、火山地 形の効果を考慮することが重要であり、特に噴火直前 の評価への影響が大きい。

3. 火山噴火に伴う現象とハザード シミュレーション

火山災害に直結する現象として、溶岩流・火砕流・ 火山泥流(融雪型含む)・噴煙・噴石などがある。第 2章で述べたように、噴出時における気体の多寡が噴 火の爆発性を規定し、それに伴い、どの現象が顕著に なるかが決まる。穏やかな噴火(非爆発的噴火)の場 合には溶岩流になりやすく、爆発的な噴火の場合は噴 煙柱が上がる噴火となり、噴石や火山灰が降下する。 また、火砕流は噴煙柱が崩壊する際に発生するものと、 ガスが抜けた溶岩が火口から斜面に沿って流下する場 合に発生するものがある。火山泥流は火山体周辺に透 水性の低い火山灰が降り積もり、その上に雨などが降 り、周囲の土石や木々などを巻き込んで発生する。こ れらの流動現象は重力流という共通性があり、現象を 記載する方程式系を統一的に扱うことが可能である。 また、爆発性が強い場合、噴煙柱が成長し、巻き上げ られた噴出物が周辺大気場により流され、火山体近傍 のみならず遠方まで噴石や火山灰として降下・堆積す る。ここでは溶岩流シミュレーション、降灰シミュレー ション、および、土石流評価に資するための InSAR 非干渉性評価を用いた降灰分布の推定と降灰シミュ レーションの連携について述べる。

3.1 溶岩流シミュレーション

溶岩流は、マグマの脱ガスがある程度進んだ状態で 火口からおよそ1000℃の温度で流出する現象である。 地形に沿って流下しながら、大気からの冷却などの影 響も受け、固化や再溶融などの現象が発生する。溶岩 流の様相は、溶岩そのものが持つ特性と溶岩流が流下 する環境(地形や水域)などにより決まる。溶岩の粘 性は化学組成、含まれる結晶量、さらにはこれらも依

図-7 季節変化する気象場との相互作用などが考慮できる1次元噴煙モデル(NIKS-1D)の概念図

存する温度特性によって規定される。また、溶岩のリ キダス・ソリダスの設定で結晶化の効果もある。これ らを再現する溶岩流シミュレーション技術は主に2つ のアプローチ、すなわち、決定論的手法と確率論的手 法がある。前者では、有限差分法や有限体積法による 2次元あるいは3次元モデルによりダイナミクスを計 算する。流速を地形勾配の関数で表現するものや、水 平方向に比較して鉛直方向の変化は少ないものと仮定 した浅水波方程式によりモデル化したものなどが広く 利用されている。また、溶岩流内部の3次元対流や周 辺からの冷却効果を加味したモデルでは、より詳細な 現象の再現と評価が可能である。後者は特に防災目的 としたものが多く、迅速な溶岩流流下の評価を行うこ とを目的として、地形勾配のみを最優先に評価するも ので、緊急時に有効である。

3.2 降灰シミュレーション

降灰は大規模噴火発生時には火山近傍のみならず、 広域におよび、もっとも被害をもたらす危険性がある 現象である。空中浮揚の火山灰は航空機の運航などの 障害となり、2010年に発生したアイスランド・エイヤ フィヤトラヨークトル火山による降灰はヨーロッパ全 域の上空に及び、人や物資の移動等、社会的・経済的 活動に大きな影響を与えた。降灰は噴火口での噴出量 やそのレート、時間変化など発生場の要因に加え、周 辺の大気場に依存してその分布が決まる。降灰分布シ ミュレーションコードは各種提案されている。我々は 気象庁において運用されている移流拡散モデル(JMA-ATM)へ、季節変化する気象場との相互作用などが考 慮できる1次元噴煙モデル(NIKS-1D)を組み込んだ ものを用いている(図-7)。

3.3 InSAR 非干渉性評価による降灰分布の推 定-土石流の評価への応用

火山噴火によって火山灰が堆積する場合、火山灰は 透水性が低いため、その後の降雨によって山体にしみ こむことなく表面を流れ、地表の岩石や木々をなぎ倒 して土石流が発生する危険性がある。火山噴火による 土石流の危険性評価のためには、降灰量分布を迅速に 把握し、土石流発生の予測につなげることが重要であ る。しかし、降灰量分布の把握は主に現地調査によっ て行われているのが現状であり、人手や時間がかかり、 律速条件となっている。このような問題点を解決する ためのアイデアとして、リモートセンシングによって 面的に降灰域を把握し、降灰シミュレーションと併せ

ることにより、土石流評価のための降灰厚分布の推定 を行う試みが実施されている。この手法では、SAR 干 渉法における干渉性を活用する。干渉性が高い場合は 明瞭な干渉縞が見られるが、低い場合は短周期のノイ ズが顕著になり、干渉縞は不明瞭になる。この干渉性 の劣化は、干渉させる2つのSAR 画像取得時におけ る地表でのレーダー波の散乱が異なることによって生 じる。噴火時を含む干渉ペアの SAR 干渉解析におい て、地表面が火山灰に覆われることによるレーダー波 の散乱の変化に起因する干渉性劣化域が、火口周辺に おいて良く見られる。このような干渉性劣化と降灰量 を定量的に関係付け、SAR 干渉解析から降灰量を求め ている。阿蘇山2016年10月12日噴火における解析(図 -8) では、降灰厚が1~3cmの領域に対応して干渉性 が低下することが分かった。火山近傍での降灰分布と 整合的なパラメータを用いて、より広域の降灰分布を 求める手順の自動化を目指している。

4. 火山ハザードシミュレーション と社会情報のカップリング

4.1 火山ハザードマップのデータベース化

特に3章で述べた、火山ハザードシミュレーション を火山防災に生かすべく、各自治体等が整備している ものが火山ハザードマップである。これらは現象毎に ハザードの内容、すなわち到達範囲・到達時間などの 情報を提供しているが、その種類として、過去の事例 を基に作成する「実績図」、発生位置や規模などを仮 定したシミュレーションの実施により作成する「ドリ ルマップ」、また、複数の計算事例を重ね合わせ、重 複した地点(メッシュ)における最大値を取るなどの 処理を含めた「ドリルマップの重ね合わせ図」がある。 また、「ドリルマップの重ね合わせ図」を拡張し、そ の包絡線をとったものをハザードマップとして公開し ている例や、大量のシミュレーション事例をもとに統 計処理を実施して確率的表現を行っているものある。

各火山ハザードのシミュレーションコードには、簡 易版から詳細版まで様々なものが提案されている。簡 易版は時空間分解能では劣るものの速報性があり、緊 急時対応に適しており、リアルタイムハザードマップ の実現が可能である。一方、詳細版は詳細な時空間分 解能があり、物理現象の再現を精密に行うことが可能 であるが、大量の計算リソースを必要とするもの多く、 速報性に劣るため、平常時におけるリスク評価に用い られる。また、大量の計算実施による統計処理が困難 であり確率表現に結びつけにくい。このため、このよ うな詳細版コードを用いてドリルマップを数多く作成 し、これをデータベース化することにより、実際の噴 火時対応にも資することができる。

4.2 社会的情報との連携 – 避難シミュレー ションへの拡張

これまでは火山の現象そのもののシミュレーション を解説してきたが、さらに社会的な要請に対応するた めには、具体的な防災行動に資する内容まで発展させ ることが期待されている。火山ハザードマップでは、 各ハザードの到達範囲や到達時間を把握することがで き、各自治体で整備する防災計画の設計に活用するこ とができる。さらに避難計画を含む具体的な防災計画 を策定するにあたり、徒歩の避難、車両等による避難 の効果、車両の場合はその台数など、避難のロジス ティクスまで踏み込んで計画を立てることが有効であ る。実際の発災時には迅速に効果的な行動を起こすた めに定量的な情報を提供できる仕組みが必要である。 図-9 は伊豆大島における溶岩流を道路と重ね合わせ て示したものである。溶岩流によって御神火スカイラ

図-9 溶岩流シミュレーションの例(伊豆大島) (Google Earth を利用)

インが通行不可となることが分かる。この場合、山頂 からどの方向に避難するのがよいか?また車両等をど う展開するのがよいか?という判断の情報を定量的に 示すための避難シミュレーションの例を図-10に示す。 このシミュレーションにはマルチエージェントモデル としてオンラインで利用可能な SUMO (Simulation of Urban Mobility)を活用している。この事例では山頂 から30台の乗用車を2分毎に15台出発させ、元町港 または岡田港に避難するケースの比較をしている。御 神火スカイラインが通行可能な場合に元町港までかか る時間は約36分であるのに対し、御神火スカイライ ンを回避して元町港に避難完了までにかかる時間は約 45分、元町港ではなく北側の岡田港に避難する場合は 約46分となった。実際には、複数の通行止め箇所の 発生や、また山頂付近の登山者の徒歩避難と車両への 集積なども必要となる。様々な状況において適確な対 応を迅速にとることができるようになろう。

5. おわりに

火山噴火とそれに伴い発生する火山災害において、 各種現象の数値シミュレーションやそれに基づく対応 策の提案は、計算アルゴリズムの開発と共に、現場 での活用による必要な項目をフィードバックすること で、より実効性のあるものへと進化をしていく。これ らに基づき、火山災害から人命・財産を守る研究開発 をたゆまなく進めることが重要である。

謝辞

本稿は、文部科学省の科学技術試験研究委託事業「課 題C:火山噴火予測技術の開発(サブテーマ3:シミュ レーションによる噴火ハザード予測手法の開発)」により 実施した成果を中心に紹介しています。また、一部は、 第2期戦略的イノベーション創造プログラム(SIP)の「国 家レジリエンス(防災・減災)の強化」において実施し ています。共に記して深く謝意を表します。

参考文献

富士山ハザードマップ検討委員会報告書(2023)

https://www.bousai.go.jp/kazan/fuji_map/pdf/report_200406. pdf

Fujita, E., Shimizu, H. A., Nakamichi, H. (2022),

High Precision Lava Flow Simulation Using 8K Drone Digital Elevation Data Journal of Disaster Research 17 (5) 779-790, 2022

https://doi.org/10.20965/jdr.2022.p0779

Ishii, K., Nishijo, A., Koyaguchi, T., Suzuki, Y. J. (2022), A physics-based source model for real-time tephra-dispersal forecasting for weak eruption plumes, J. Appl. Volcanol., 11:15, https://doi.org/10.1186/s13617-022-00127-w

図-10 伊豆大島における車両による避難シミュレーションの例

Kozono, K., Ishibashi, H., Okumura, S., Miwa, T. (2022), Conduit Flow Dynamics During the 1986 Sub-Plinian Eruption at Izu-Oshima Volcano Journal of Disaster Research 17 (5) 754-767, https://doi.org/10.20965/jdr.2022.p0754

小澤拓,藤田英輔(2020),衛星 SAR を用いた降灰分布推定手法の研究(その4),日本火山学会2020年度秋季大会,O3-15.

Simulation of Urban Mobility, https://eclipse.dev/sumo/

新堀敏基,石井憲介,(2021),気象庁移流拡散モデル設計書,気象研究 所技術報告,84,146 p, https://doi.org/10.11483/mritechrepo.84

新堀敏基,石井憲介,清水慎吾,小澤拓,藤田英輔(2022),衛星 SAR を用いた降灰量分布推定手法の研究:降灰シミュレーションによる広 域分布推定,JPGU2022,SVC30-P01.